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Abstract

We introduce a class of nonlinear damping models with application to flexible flight

structures characterized by low damping. We are able to obtain approximate solutions of

engineering interest for our model using the classical "averaging" technique of Krylov and

Bogoliubov. The results should be considered preliminary pending further investigation.

t Paper presented at NASA SCOLE Workshop, November 1987, Colorado Springs, Colorado.



1. Introduction

The problem of characterizing the damping mechanism in flexible structures has

received renewed attention in recent years in connection with the need to stabilize flexible

flight structures such as antennas deployed in space. The damping models even when

simplified to be linear appear to lead to rather complex mathematics if the structure is

described by partial differential equations and much progress has been made (the analyticity

of the generated semigroup has been shown to be essential). But experimental evidence as

in SCOLE [ 1 ] seems to support the need for nonlinear models -- the decrement is much

smaller than predicted by linear models. Some of the difficulty inherent in handling

nonlinear models is offset by the fact that damping, whatever its nature, is still small. This

opens up in particular the feasibility of obtaining approximate solutions using the classical

averaging method of Krylov-Bogoliubov [ 2].

In this paper we study a class of nonlinear models and approximate the response by

the Krylov-Bogoliubov technique. We use a modal expansion and neglect off-diagonal

terms. The emphasis is on useful engineering solutions rather than abstract mathematics.

We begin in Section 2 with the primary nonlinear damping model for the simplest

system -- the one-dimenisonal or single-mode case. We emphasize in particular one

feature that emerges, viz., the potential lack of identifiability from response data. In Section

3 we generalize to the multi- (non-finite-) dimensional case. In Section 4 we show the

relevance of the Krylov-Bogoliubov technique for approximating solutions to nonlinear

boundary feedback. We may mention that there is much work -- even classical in nature

-- on nonlinear oscillations such as the nonlinear pendulum where the spring constant is no

longer linear; however, relatively little attention appears to have been paid to the small

nonlinear damping term case.
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2. Single-mode Example

To illustrate ideas, let us begin with a one-dimensional (single-mode)

d((O + F_.D(x, 50 + O_2x(t) = 0

where the dots indicate time-derivatives, as usual. We assume that:

the energyso that for E(t),

we have

example:

(2.1)

D(x, Jc)dc > 0 (2.2)

(2.3)E(O = _-(,i:(t) 2 + 0_2x(t) 2)

d E(o = -eD(x, <_ 0

satisfyingthe energy non/ncreaserequirement.The particularchoice for

shall make is:

D(x, 2) =

are normegative integers,

(2.4)

where

1 12' 
Ko(a) - 2_ D(a sin 0, ao_ cos 0) cos 0 dO (2.8)

0

0 < o_,13 and 0 < ot+13 < 1; 0<_<1, 0<7<1.

For small enough E we may apply the averaging method of Krylov-Bogoliubov [2, 5].

Thus, we write for the approximate solution:

x(t) = a(t) sin (cot + 0(t)) (2.6)

where the amplitude function a(t) and the phase function 0(t) are slowly varying over

the period T = 2rdco. According to the K-B approximation [2]:

da E
go(a) (2.7)

where m, n

2_i + _/x2"lxl _ _c<2"+1)_II3 (2.5)

D(x, de) we
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and

-_ Po(a)dt = (2.9)

2_

1 j
Po(a) = _-_

0

D(asin¢, ao_ cos ¢) sin ¢ d_}. (2.10)

Now we can readily calculate that for our choice, because of (2.2),

Po(a) = 0

JKo(a) -- 2o_a co cos2_ de
0

l+13y 2m+2n+l+ct+_ [_ f 2_
+ co a

o
sin2"O c0s2n+2_ Isin ¢1a Icos _11_de I

= _2_a + a2m+2n*l+a*f_yO)2n+l+f_t

where

2_

1
2re f sin2"_ cos2"_ cos2_ Isin _1a Icos _1g d0

0

and is a constant less than 1/2. Hence letting p -- 2rn + 2n, we have

da
-E(O3_a + aP+l+c_+f_O32n+fJ'y[t)dt -

We may set _ = 1 without loss of generality since we may absorb it into

Then

t

yielding

a(t) = a(O)e -t_; rl
I.

a(t)

- 0)_a + aP+l+a+130)2n+13yId
a(0)

1

+ a(O)P+a+13_ 2"-1+13 _-_:(1-e-'°_;(P+a+f_))] -p+a+f_-

We can readily verify that for _ = 0, we have

1

a(t) = a(O)[1 + a(O)P+a+f3o_2n+f3yB(p + ot + p)t]-P+_-T-ff-_

(2.11)

(2.12)

and y.

(2.13)

(2.14)

(2.15)
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The case ), = 0 is evenmoreobvious.Onesalientfact that emergesimmediatelyfrom

(2.14)and(2.15)is that it wouldbedifficult to resolve p + ct + 13 into its components

from response data, unless we can change to.

Note also from (2.15) that the rate of decay is not exponential in t and further the

decrement over any integral multiple of the period depends on the initial amplitude as well

as the frequency of oscillation. Finally for inegral k and

2rtk
t -

to

we have, taking logarithms and setting c = p + cc + I_

log
a(0)

- -2nk;

_ lc log [1 -2_k_c 1
a(O)cto2n-l+f-_TP" (1 - e ) (2.16)

+ _

For small _ this is well approximated by

1 log (1 + 2rck)_a(0) c) ,

where

_, = (.02n+13-1 71.t "

The slope (as a function of k)

2n_'a (0) c (2.17)
= -2n_ c(1 + 2nk)_a(0) c)

and hence the linear damping term is yielded by the asymptotic slope as k -_ _, while

for small k there is a marked curvature which depends also on the initial amplitude

a(0). The inital (at k = 0) slope

= -2=_- 2rtXa(0)c (2.18)
c

is larger (in absolute value). The second derivative being positive, the curve is convex

-- CUP. This is in excellent qualitative agreement with SCOLE damping data: see

Figure 1 where amplitude is plotted on logarithmic scale (period = 5 seconds).
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OF QUALIfy

To get another version of (2.16) we may replace (2.7) by the more exact formula

a(twT) a(t)
- _.. Ko(a(t)) (2.19)

T =
I.O

and hence using

a k = a(kT) (2.20)

we would have

eT
ak+ 1 = a k - 7._ Ko(ak)

so that

ra.+ll : (1_ __earKo(ak)I_log k ak J co ak Y

which under our "small damping" assumption, may be replaced by

(2.21)

ak+l e.T Ko(ak)

log ak tO a k (2.22)

c 2n-l+_
= -¢27r(_ + ak)'l.tto ). (2.23)

3. Multidimensional Generalization

Analogous entirely to the one-dimensional case, we may write the general nonlinear

dynamic equation for flexible structures [2] as

M_(t) + _(x(t), 5c(t)) + Ax(t) = 0 (3.1)

where the state x(t) ranges in a separable (real) Hilbert space _t; M is a self-

adjoint positive definite (with bounded inverse) operator on _t onto _t; A is a self-

adjoint nonnegative definite closed linear operator with domain dense in _t and with

compact resolvent; we shall (for simplicity) assume that zero is in the resolvent set of
r

A. In the linear case

_(x(t), 5c(0) : D±(t) (3.2)

where D is also a self-adjoint nonnegative definite closed linear operator whose

domain includes that of _-. In the most important case we further specify that

6O
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D% = 2{kc0kM % (3.3)

where (0k } are the M-orthonormalized eigenfunctions of A with eigenvalues (o2 such

that

A0k -- 0)2 M0k . (3.4)

Here _k is the damping ratio. If _k -- _ and we have strict proportional damping --

see [3] for more -- D is then essentially the positive square root of A (except for M).

More generally we require that lim _k > _ > 0. In the nonlinear analogue of (2.5) we
k

set

(3.5)_(_)),Ok) -- 0 j;e k

and more generally for x, y such that

2 4m +20t 2n+2+213 2Y- (o2kbk + Y_ak bk _k < *"

where

(3.6)

we define:

ak = [x, 0kl ; bk = [Y, Ok] (3.7)

•2n+ 1
[_(x, y), _k] = _k a_ '_ [ak[a Ok Ibk113 +

where, as before, m and n are nonnegative integers and that

0 < a, [3 < 1; ct+[_ < 1 ;

Note that

Hence if

[_(x,y), y] > 0

E(t) = _ {lAx(t), x(t)l + [M±(t), k(t)]}

for every x and y.

we have that

2 _k(ok bk (3.8)

tE(t) = -[_(x(t), k(t)), 5c(t))l <

Or, the energy is nonincreasing. Using the modal expansion

6/

0 < _'. (3.9)

o. (3.1o)
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we see that for each k

iik(t ) + o2_ ak(t)

x(t) = Y_ak(t ) #k (3.11)

+ ak(t)21ak(t)laak(t)lak(t)l I_ + 2_k0lkak(t ) = 0. (3.12)

We can therefore invoke the K-B averaging procedure obtaining the approximate solution

ak( 0 = Ak(t ) sin (cokt + 0k)

1

[ 2n+13-1 _/kg (1- e-t;kokc)l-'i-Ak(t ) = Ak(O ) e-t;k_k 1 + Ak(O) c O_k

And for _k--0,
1

l 1Ak(t ) = Ak(O ) 1 + Ak(O) c O)k Ykgct

where, as before,

(3.13)

(3.14)

2_1 f sin2mO cos 2"# Isin #l a Icos _l I_ cos2# d0 . (3.15)
0

For ot + 13= 0, we can give a kernel representation. Thus

z = _(x, y) = Y. Yi _i[#i, Xl2m [_i' y]2n+ 1

where

Y.y_ < 0_; yi_>O;

and for the concrete realization R = L2(0, L), the corresponding "kernel" would be

W(s, G 1 ..... (Y2m, $1 ..... S2n+ 1) = Z _i ¢i(S) I_i(G1) "'" I_i(G2m) (Pi(Sl) "'" ¢_i(S2n+ 1) (3.16)
i

and

L L

Z(S) = f "'" ; W(s, O I ..... (J2m, s1 ..... S2n+l) x(GI) x(G2) "'" x((J2m)

o o (3.17)

× y(s 1) ""y(s2n+l) dG 1 do 2 .-. dG2m ds I ... ds2n+l •

A plausible model in this case would be to rewrite (3.1) as

Mk'(t) + _2(x(t), Dk(t)) + 2_DSc(t) + Ax(t) = 0. (3.18)
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which will satisfy (3.10), since the _'i in (3.16) are nonnegative.In the notationof

(3),the"roll" equationsfor examplewill havetheform:

pAi_,(t, s) +

L

_::
0 0

El, u_'"(t, s) - 2_/pAEI, i)3u_(t' s)at

L

W(s, a I ..... a2,,,, s 1, .... s2,+l ) x u,(t, al) "" ut(t, 02,,, )

_3u_( t, Sl) _3u_( t, S2n+l)
X 3t _2S _t _ZS dal "'" dc2m dsl "'" ds2"+l

ffi 0.

It is clear that we may generalize (3.17) without recourse to modes. The "nonlocal"

nature of the operator should hardly be surprising, since this is already so in the

linear case if we want strict proportionality (_k = 4) for example.

4. Application to Nonlinear Boundary Feedback

In this section we shall apply the K-B averaging technique to obtain approximate

solution to the response of a flexible structure to nonlinear boundary feedback control. The

control effort is small so that the K-B approximation is reasonable. We follow [4] for the

model where the "boundary" is finite-dimensional. Thus we have in the same setting as

Section 3, but omitting the natural damping term:

M_'(t) + Bf(B*±(t)) + Ax(t) = 0

onto _t and f(.) maps R m into R"

[f(u),u] > 0 for u# 0. (4.2)

where B means R"

Using the modal expansion as in Section 3:

x(t) = _. ak(t ) _lc

ak t) + + [f(gaj(t)bj), bk] = 0

G3

we obtain

and is such that

(4.1)

(4.3)
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where
B*0k = bk-

Taking the approximation

we see that setting

[f(Z itj(t)b)),bk] = [f(_k(t)bk),bk]

ak(t ) = Ak(t ) sin (cokt + 0k(t))

that

d#k(t) = 0

Ak(t = K°(Ak(t))
fDk

where

2n1
Ko(a) - 21_ f [f(aco k cos Obk), bk] cos O dO.

o

To simplify matters further let us take

m = 1.

Then

[f(aoJkb k cos 0), bit] = bit f(abkok COS 0) •

We shall take:

f(u) = _,tan-1 u

which is consistent with (4.2). Then (4.3) becomes

iik(t) + o_2ak(t) + _l_b2tan-1 _k(t) = 0 (4.4)

Hence

Ko(a)

2_
1

- 2re f
o

_,bk tan -1 (abkco k cos 0) cos 0 dO

"2/_2t"_2 -- 1 ]X [,11+ ..k.ok
2o)k

Ak(t) dAk(t) _,

_2t.,2t,_2 = - _ dt .[41 + .vk,. k - 1

To solve this, let

z(t) (4.5)
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so that

dz(t) - b 2 _, dr. (4.6)
2('¢r_ - 1)

Let

F(z) = e"17 (_z - 1), z_> 1. (4.7)

Then

F'(z) > 0 for z> 1

and hence we may define the inverse function

F(z) = y ; z = F-l(y).

Thus (4.6) has the solution:

z(t) = F -1 [F(z(O))e -b_'t] , (4.8)

where

unless Ak(0 ) = 0.

= :bko_kAk(t) "_F-I(F(1 + Ak(O)2bko_k)e - I (4.9)

Note that

z(0) = 1 + Ak(0)2b2¢o 2 > 1

F-l(y) _ 1 as y_0

and hence z(t) decreases monotonically to 1 and hence the amplitude Ak(t ) decays to

zero asymptotically.

Note that the decay rate depends on the control effort 2_/_2 as well as the initial

amplitude. Of course we have in (4.4) yet another nonlinear damping model. Following

(2.22) we have:

222 1
2r_, Ix/1 + a]bko3 k - 1

- 2_ [. aj

where

2_
aj = A_(jT) ; T -

COk
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